
Adaptive Filters and Channel Equalization

1

Adaptive 
Equalizers

Dr Chris Dick
DSP Chief Architect
Director, Signal Processing Engineering
Xilinx Inc.

Adaptive Filters & Channel Equalizers   2

Multipath Environment

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Adaptive Filters and Channel Equalization

2

Adaptive Filters & Channel Equalizers   3

Why an Equalizer?
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Adaptive LMMSE-RAKE Receiver

LMMSE: linear minimum mean squared error

Channel
Estimator

Adaptive FIR

LMS

*
-

Channel
Estimator

Adaptive FIR

LMS

*
-

Σ

F. Swarts, Ed., CDMA Techniques for Third Generation Mobile Systems,
Kluwer AcademicNorwell, Mass., 1999.
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3G Wireless Space-Time Processor

w0 1,w0 0, w0 2, w P0 1, −

w1 1,w1 0, w1 2, w P1 1, −

wM −1 1,wM −1 0, wM −1 2, wM P− −1 1,

Σ Receiver

• Wideband combining network

• Two-dimensional processor
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Two-Tap Filter
• Adaptive filter has two coefficients
• w1 and w2 must be chosen so that the squared-error surface J is 

minimized

minJ
0
2w

0
1w

Performance 
function J

Filter 

Coefficient

w 2

Filter Coefficientw1

• Error surface is now a 
paraboloid

• Surface obtains minimum 
value Jmin where w1 and 
w2 equal their optimum 
values w1 and w2 

0 0
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Search Technique
Performance 

function J

Filter 

Coefficient

w 2

Filter Coefficientw1

Starting here formulate a way to 
roll down hill to the bottom of 
the bowl … the optimum weight 
vector
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Adaptive Filters
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Cmplx LMS Algorithm: Outp & Err 
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Complex LMS Algorithm: Coeff Update
ε I( )n

ε I( )n

ε Q ( )n

XI( )n

XQ ( )n

µ

µ

z−1

+

z−1

" ( )WI n +1

" ( )WQ n +1

Denotes vector quantity
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" ( )WQ n

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Adaptive Filters and Channel Equalization

6

Adaptive Filters & Channel Equalizers   11

QAM Demod Block Diagram (1)
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Decision Directed Equalizer
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Decision Feedback Equalizer
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Processing Requirements
Baud
Rate

Delay
Spread

Equalizer
Length

Filter
Computation
(MMACs)

VGC (128-QAM) 2400 Hz 3 ms 32 0.307
Cable (64-QAM) 5.1 MHz 2 us 32 700
Benign static
microwave (64-
QAM)

33 MHz 6 ns 11 1.452

Static Microwave
(64-QAM)

33 MHz 1 us 128 17,000

“On the move”
microwave
(QPSK = 4-QAM)

33 MHz 0.3 us 40 5,200

J. R Treichler, M. G. Larimore and G. C. Harp, “Practical Blind Demodulators for High-Order QAM 
Signals, Proc. IEEE, Vol. 86 No. 10, pp. 1907-1926, 1998.
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16-QAM Channel Equalizer Transmitter (Tx)

• Data and Constellation
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16-QAM Channel Equalizer Transmitter

• Constellation and eye diagram
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16-QAM Channel Equalizer Receiver (Rx)

• Inter-Signal Interference (ISI) data and constellation
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Before Equalizer
• Unequalized Rx data sequence and eye diagram
• Observe eye is completely closed
• Rx cannot make symbol decisions
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Adaptive Equalizer Runs

• Plots show temporal evolution of filter and error 
function
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After Equalizer
• Equalized data
• Constellation and eye
• Red symbols are with start-up transient removed
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The Design Space is Rich
• Decision directed T/2 Adaptive Equalizer - LMS based update
• Using FPGAs There are multiple architectural choices available 

to meet a desired area/performance objective
• Fully parallel

– N MAC processing elements (PEs)
– N LMS PEs

• Folded architecture
– 1 MAC PE & 1 LMS PE for each polyphase segment

• … Many others
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Pipelined Equalizer
• Pipeline datapath to support high data rates
• FFE is relatively straightforward to pipeline
• DFE much more difficult to achieve high-speed operation

-

D1H(z)

LMS ProcessorD5

D2
D2

D3

D4
µ

, ( )I Qx n
, ( )I Qy n

D2 used to pipeline symbol mapper
Mapper compensating delayDa is used to pipelined filter

Pipelined error sig mpys with D4

Align data and scaled error signal 
with D5
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T/2 FSE Implementation
• Data delivered at 2 samples/symbol
• 2-stage polyphase implementation
• All functional units run at the symbol rate

-

LMS Processor

µ

0 ( )H z

LMS Processor

0 ( )H z

( )y n( )x n

fsymOutput rate = 
Computation rate for 
the polyphase sub-
filters H0(z) and 
H1(z) and LMS 
processors is at the 
baud rate fsym
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Parallel Implementation
• Sub-filter architecture
• Direct form implementation
• FFE can be pipelined

DD DD, ( )I Qx n

D

( 1)T T N T= + −crit mpy addNon-pipelined implementation with critical path 

Tcrit

D = symbol period delay

0a 1a 2a 3a 1Na −
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Pipelining (1)
• Pipelined direct form filter

, ( )I Qx n

T T T= +crit mpy addPipelined implementation with critical path 

Tcrit

2a 1Na −0a 1a

2z−

1z−

2z−

1z−

1z−

1z−

Cost of each delay = B1/2 slices independent of delay value n for n <=17

1B

2B

B2/2 slices since a 1-bit sum/delay can be realized using 0.5 of a slice
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Pipelining (2)
• Pipelined direct form filter

– Pipelined multiplier

, ( )I Qx n

T T=crit mpyPipelined implementation with critical path 

Tcrit

2a 1Na −0a 1a

2z−

1z−

2z−

1z−

1z−

1z−

Cost of each delay = B1/2 slices independent of delay value n for n <=17

1B

2B

B2/2 slices since a 1-bit sum/delay can be realized using 0.5 of a slice

1z−
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Transposed FIR
• Sub-filter architecture
• Transposed FIR implementation
• Pipelining inherent component of transposed filter

, ( )I Qx n

DTcrit

D = symbol period delay

0a1a2a3a1Na −

D D D D

T T=crit mpyTransposed FIR with critical path 
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Implementation

• Parallel T/2 FSE
• Polyphase decomposition
• 8-taps total

– 4 taps in each polyphase segment
• 8-LMS PEs
• Coefficients updated at the symbol rate
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Pipelined Parallel T/2 FSE

• All processes pipelined for performance

Pipeline balancing registers

Parameterized module
Symbol mapper

Adaption rate factor muWeight error signal

Generate error signal
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Pipelined Parallel T/2 FSE
FFE customization panel
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Input sample commutator

Pipelined Parallel T/2 DD FSE
• Design components are based on a library of highly 

optimized module generators

Polyphase Filter produces samples 
at the symbol rate
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Pipelined Parallel T/2 FSE
• One polyphase segment

8-tap transposed complex FIR

8 LMS PEsPipeline balancing registers
To implement delayed LMS update
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Pipelined Parallel T/2 FSE
• One tap (complex) of transposed FIR

Complex multiplier

Partial product sum/delay
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Pipelined Parallel T/2 FSE
• Pipelined complex multiplier

Pipelined embedded mpys
- Virtex-II, Virtex-IIP, Spartan-III

Pipelined post-adds
- optional rounding & bit field re-sizing
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Pipelined Parallel T/2 FSE

• LMS PE architecture

Complex accumulator

SRL16 register file
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Pipelined Parallel T/2 FSE

• Pipelined symbol mapper (slicer)
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Finite Arithmetic Implementation
• Rapid design 

interations enabled 
by parameterizing 
datapath using m-file

• Quickly find optimum 
(meets performance 
with minimum area) 
implementation

• Plot shows three 
implementations of 
the equalizer for 18b, 
20b and 24b 
datapath

• Select 20b in this 
case

18b

20b

24b
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† software version 5.1.03i, speedfile version 1.93, par -ol 5
System Generator v 3.1 

Pipelined Parallel T/2 FSE
• Benchmark data

– 8-tap FSE
• Polyphase implementation 4 taps/filter segment
• 16-QAM

– 1037 logic slices
– 66 embedded multipliers
– Max fclk † = 240 MHz (XC2VP50ff1148-7)

• For fclk = 240 MHz a symbol rate of 120 Msym/s can be 
supported
– For 16-QAM this is a data rate of 480 Mbps
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† software version 5.1.03i, speedfile version 1.93, par -ol 5
System Generator v 3.1 

Pipelined Parallel T/2 FSE
• Benchmark data

– 16-tap FSE
• Polyphase implementation 8 taps/filter segment
• 16-QAM

– 2332 logic slices
– 66 embedded multipliers
– Max fclk † = 225 MHz (XC2VP50ff1148-7)

• For fclk = 225 MHz a symbol rate of 112.5 Msym/s can be supported
– For 16-QAM this is a data rate of 450 Mbps
– For 64-QAM this is a data rate of 675 Mbps
– For 256-QAM this is a data rate of 900 Mbps

– Computation rate = ~15 Giga-MACs/second
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Folded FSE
• Diagram of the implementation showing the filter and LMS engines in 

each of the two polyphase arms
• LMS PE clocked at M x symbol rate to update all coefficients in a 

symbol period
{ }( )x nℜ

{ }( )e nℜ
{ }( )x nℑ

{ }( )e nℑ
- D RND/Cast

( )
( )
( )

e n
x n
c n

=
=
=

weighted error signal
regressor vector samples
filter coefficients

D RND/Cast

LMS coefficient register file constructed using SRL16s

{ }( )c nℜ

{ }( )c nℑ
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† software version 5.1.03i, speedfile version 1.93, par -ol 5
System Generator v 3.1 

Folded FSE
• Benchmark data

– 8-tap FSE
• Polyphase implementation 4 taps/filter segment
• 16-QAM

– 833 logic slices
– 18 embedded multipliers
– Max fclk † = 215 MHz (XC2VP50ff1148-7)

• For fclk = 200 MHz a symbol rate of 20 Msym/s can be 
supported
– For 16-QAM this is a data rate of 100 Mbps
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Decision Feedback Equalizer

LMS Update Process

DD D D D
-

LMS Update Process

DD D D D

µ

, ( )I Qx n

, ( )I Qy n
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DFE

• While FFE is relatively straightforward to pipeline 
DFE is not due to its recursive structure

• Standard techniques (e.g. [1] [2]) for pipelining 
recursive structures do not work since the data 
decision is a non-linear process

[1] K. K. Parhi and M. Hatamian, “A High Sample Rate Recursive Filter Digital Filter Chip”, VLSI Signal Processing III,
IEEE Press New York, 1988.
[2] K. K. Parhi , VLSI Digital Signal Processing Systems, Wiley, 1999.
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DFE: Finite Arithmetic Considerations (1)

• Special attention must be given to finite arithmetic 
implementations of a DFE
– More care than required for implementation of a fractionally-

spaced FFE
• Rounding/Truncation

– Generally rounding arithmetic is preferred for the implementing 
the DFE

– The bias introduced by a datapath employing truncation 
arithmetic will eventually cause an incorrect decision at the 
slicer potentially causing a catastrophic failure of the entire 
equalizer

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Adaptive Filters and Channel Equalization

23

Adaptive Filters & Channel Equalizers   45

DFE: Finite Arithmetic Considerations (2)
• Feedforward and recursive sections of the equalizer are coupled by the 

error signal
• The datapath precision employed for a stable FFE-only structure may not 

be adequate when this same FFE is extended using decision feedback

LMS Update Process

DD D D D
-

LMS Update Process

DD D D D

µ

, ( )I Qx n

, ( )I Qy n
Coupling of FFE and DFE
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DFE: Finite Arithmetic Considerations (3)

• The next sequence of 4 mesh plots show the 
evolution with time of the coefficients in the FFE and 
DFE for stable (at least within the simulation epoch) 
and unstable implementations

• Unstable implementation employs truncation 
arithmetic 

• Stable implementation employs truncation arithmetic 
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FFE/DFE: Trnc Vs Rnd
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FFE/DFE: Trnc Vs Rnd
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FFE/DFE: Trnc Vs Rnd
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FFE/DFE: Trnc Vs Rnd
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DFE: Finite Arithmetic Considerations (3)

• Many millions of input samples may need to be 
processed for the FFE/DFE equalizer to become 
unstable due to finite arithmetic effects

• This can equate to days even weeks of simulation 
time

• Hardware platform is extremely useful for doing 
rapid design turns
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DFE: Finite Arithmetic Considerations (4)

• The hypothesized stable equalizer in the previous simulation 
coefficient evolution surfaces was not in fact stable

• A Simulink simulation of the equalizer was run for 24 hours and 
maintained stability
– ~1 million samples processed

• When the design was ported to a hardware platform the equalizer 
failed immediately
– Hardware platform in this case was the Xilinx/Nallatech DSP kit using 

System Generator for DSP (hardware-in-the-loop) to generate the 
implementation
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DFE: Finite Arithmetic Considerations (5)

• The datapath in the FFE and DFE was extended to a 
28.24 implementation and was run for 1 week and was 
found to be stable
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Equalizer Testbench

16-QAM data source

Up-sample and shape to 
4 samples/symbol

Complex channel FS FFE/DFE

Visualization
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Design Data Visualization

Re[DFE Coeff]

Im[DFE Coeff]

Re[FFE Coeff]

Im[FFE Coeff]
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FFE/DFE

FFE (Folded) Symbol de-mapper

DFE
DFE Enable

Condition error signal
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FFE Implementation

Input Commutator (pipelined)

Filter/LMS PEs phase 0 and 1
I/Q Input 
2 samples/symbol

Combine polyphase 
sub-filter outputs

Functional units operating at symbol rate

PE = Processing Element
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DFE Implementation

• DFE Parameter binding supported 
using m-file

• Simple to generate, evaluate and 
verify many different configurations

DFE subsystem

Subsystem Mask
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DFE Implementation
• Transposed filter
• Parallel filter architecture
• Number of taps defined via subsystem mask parameter

Folded LMS processor
Filter cell Pipelined adders

Cmplx mpy
4 real mpy 2 adds
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DFE Implementation

DFE Folded LMS 
processor

Upsample by M (DFE length) so that LMS PE 
runs at 6x symbol rate
All taps updated at symbol rate

Round LMS acc. to field 18b width to minimize number 
of mpys used in filter implementation

cmplx mpy
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DFE Folded LMS PE

Upsample by M (DFE length) so that LMS PE runs at 6x symbol rate
All taps updated at symbol rate

Round LMS acc. To field 18b width so minimize number 
of mpys used in filter implementation

cmplx mpy

SRL16-based accumulator bank
SRL16 register file

Flops
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Parameterized Graph
• Modify one subsystem mask 

parameter to generate different 
implementations

• No manual re-drawing of graphN DFE = 6

N DFE = 20

N DFE = 50

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Adaptive Filters and Channel Equalization

32

Adaptive Filters & Channel Equalizers   63

FFE/DFE Resource Utilization
• Benchmark data

– 16-QAM
– 16-tap FSE

• Polyphase implementation 8 taps/filter segment
– 6-tap DFE
– 2592 logic slices
– 46 embedded multipliers
– Max fclk † = MHz (XC2VP50ff1148-7)

• For fclk = MHz a symbol rate of 20 Msym/s can be 
supported
– For 16-QAM this is a data rate of Mbps
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FFE/DFE Resource Utilization
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Extensions to LMS Algorithm

• Basic LMS
• normalized LMS (NLMS)
• signed data LMS (SD_LMS)
• signed error LMS (SE_LMS)
• signed data signed error LMS (SDSE_LMS)
• Gear-shifting algorithms

Adaptive Filters & Channel Equalizers   66

Signed Data LMS
• Minimize resource utilization

– Primarily embedded multipliers
• Sacrifice

– Rate of convergence
– Excess mean-squared error

LMS Update Process

DD D D D
-

LMS Update Process

DD D D D

µ

, ( )I Qx n

, ( )I Qy n
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Signed Data FFE/DFE
• Benchmark data

– Signed-data update used only in FFE
– 16-QAM
– 16-tap FSE

• Polyphase implementation 8 taps/filter segment
– 6-tap DFE
– 2412 logic slices
– 38 embedded multipliers
– Max fclk † = MHz (XC2VP50ff1148-7)

• For fclk = MHz a symbol rate of 20 Msym/s can be 
supported
– For 16-QAM this is a data rate of Mbps
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Convergence Comparison
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• Complex channel time response

• FFE Only
• Compare smoothed error signal (dB)

– Signed data LMS
– LMS

~2dB
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Convergence Comparison

• Complex channel time response

• FFE Only
• Compare smoothed error signal (dB)

– Signed data LMS
– LMS
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Xilinx DSP Eval Board
• Virtex-II (XC2V1000/3000)
• Dual A/D D/A
• PCI & USB interface to host system
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QAM Demod Simulation
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Extensions to LMS Algorithm

• Basic LMS
• normalized LMS (NLMS)
• signed data LMS (SD_LMS)
• signed error LMS (SE_LMS)
• signed data signed error LMS (SDSE_LMS)
• Gear-shifting algorithms
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Normalized LMS (1)

• In the standard LMS algorithm the adaptation 
constant µ determines the convergence of the 
algorithm

• One practical problem confronted in the choice of µ 
is to ensure that it does not become large enough 
to impact the algorithm stability

• The largest value of µ is determined by the largest 
eigen value of the autocorrelation matrix R
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Normalized LMS (2)

• However R is not typically available and even if it 
were computing its eigen values would by 
computationally expensive

• Reasonable approach is to find a bounds for the 
largest eigenvalue

• It can be shown that

{ }
1

( ) ( )
N

t
i i

i
k k iλ λ

=

=∑X XAvrg   where  is the 'th eigenvalue
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Normalized LMS (3)

• Because all of the eigenvalues are non-negative

{ }
1

( ) ( )
N

t
i

i
k k λ λ

λ

=

= >∑X X max

max

Avrg

meaning the average value of the inner product is an
upper bound to - the largest eigenvalue

Adaptive Filters & Channel Equalizers   76

Normalized LMS (4)

• This suggests defining µ as

• Using this form for µ results in the Normalized 
LMS algorithm

( )
( ) ( )

k
k k
αµ

α

=
X XT

where  is a positive constant chosen to be between 0 and 2
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Normalized LMS (5)
• Using this form for µ results in the Normalized LMS

algorithm

• α is the new “normalized” adaptation constant, while γ is 
a small positive term included to ensure that the update 
term does nor become excessively large should 
XT(k)X(k) temporarily become small

( ) ( ) ( )
( ) ( ) ( )

( ) ( )( 1) ( )
( ) ( )

y k k k
e k d k y k

e k kk k
k k

α
γ

=
= −

+ = +
+

W X

XW W
X X

T

T
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Normalized LMS (6)

• At first it may appear that inclusion of the term 
XT(k)X(k) in the denominator increases the computation 
requirement by another N multiplications and additions 
but this can be avoided if N extra storage locations are 
available

• At time k, XT(k)X(k) is given by

1
2

0
( ) ( ) ( )

N

i
k k x k i

−

=
= −∑X XT
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Normalized LMS (7)

• The term XT(k+1)X(k+1) can be computed by 
adding in x2(k+1) and subtracting x2(k-N+1) 

• By storing the intermediate values of x2(.) the 
computation required to update the inner product 
is reduced to a squaring, an addition, and a 
subtraction

• Note that a division operation is required
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Normalized LMS (8)
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NLMS Implementation (9)

• The main computation to address in the NLMS is 
an effective method for computing the division

• The linear rotation mode of the CORDIC 
algorithm is useful for this operation
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NLMS Implementation (10)
• Linear CORDIC datapath
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Initial Condition = 0

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



Adaptive Filters and Channel Equalization

42

Adaptive Filters & Channel Equalizers   83

NLMS Implementation
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Computing  µµµµ
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Blind Equalizer

• Initially receiver will not have locked
– frequency or Phase locked loops

• FSE & DFE are decision directed procedures that 
will not function correctly in the presence of 
Doppler

• Need a non decision directed equalizer to acquire 
the channel when a link is opened
– Blind equalizer
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Blind Equalizer
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Blind Equalizer Adaptation

• Need a new process for adapting the coefficients 
of the blind equalizer

• Particularly successful method is the constant 
modulus algorithm (CMA)

• CMA equalizer utilizes knowledge of structure in 
the constellation
– e.g. for QPSK the constellation points are on a circle
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CMA Equalizer

• Constant modulus algorithm (CMA) seeks to 
minimize a cost defined by the Constant 
Modulus(CM) criterion

• CM criterion penalizes deviations in the modulus 
of the equalized signal away from a fixed value
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CMA Equalizer

8-PSK 
constant modulus alphabet

16-QAM 
non-constant modulus alphabet

• Remarkably the CM criterion can successfully equalize 
signals characterized by source alphabets not possessing 
a constant modulus (e.g. 16-QAM)

Adaptive Filters & Channel Equalizers   90

CMA Equalizer
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CMA Equalizer
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EQ: CMA/FFE/DFE

CMA cost

Mapper for DD eq

FFE
DFE
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Burst Equalizer

• When the data packet length is short there may 
not be enough samples for the equalizer to 
acquire the channel

• Equalize the data using an iterative process
• Run the equalizer over the input data using the 

coefficient set from iteration i as the initial 
condition for iteration i+1
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